If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 7x2 + 18x + -1 = 0 Reorder the terms: -1 + 18x + 7x2 = 0 Solving -1 + 18x + 7x2 = 0 Solving for variable 'x'. Begin completing the square. Divide all terms by 7 the coefficient of the squared term: Divide each side by '7'. -0.1428571429 + 2.571428571x + x2 = 0 Move the constant term to the right: Add '0.1428571429' to each side of the equation. -0.1428571429 + 2.571428571x + 0.1428571429 + x2 = 0 + 0.1428571429 Reorder the terms: -0.1428571429 + 0.1428571429 + 2.571428571x + x2 = 0 + 0.1428571429 Combine like terms: -0.1428571429 + 0.1428571429 = 0.0000000000 0.0000000000 + 2.571428571x + x2 = 0 + 0.1428571429 2.571428571x + x2 = 0 + 0.1428571429 Combine like terms: 0 + 0.1428571429 = 0.1428571429 2.571428571x + x2 = 0.1428571429 The x term is 2.571428571x. Take half its coefficient (1.285714286). Square it (1.653061225) and add it to both sides. Add '1.653061225' to each side of the equation. 2.571428571x + 1.653061225 + x2 = 0.1428571429 + 1.653061225 Reorder the terms: 1.653061225 + 2.571428571x + x2 = 0.1428571429 + 1.653061225 Combine like terms: 0.1428571429 + 1.653061225 = 1.7959183679 1.653061225 + 2.571428571x + x2 = 1.7959183679 Factor a perfect square on the left side: (x + 1.285714286)(x + 1.285714286) = 1.7959183679 Calculate the square root of the right side: 1.340118789 Break this problem into two subproblems by setting (x + 1.285714286) equal to 1.340118789 and -1.340118789.Subproblem 1
x + 1.285714286 = 1.340118789 Simplifying x + 1.285714286 = 1.340118789 Reorder the terms: 1.285714286 + x = 1.340118789 Solving 1.285714286 + x = 1.340118789 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.285714286' to each side of the equation. 1.285714286 + -1.285714286 + x = 1.340118789 + -1.285714286 Combine like terms: 1.285714286 + -1.285714286 = 0.000000000 0.000000000 + x = 1.340118789 + -1.285714286 x = 1.340118789 + -1.285714286 Combine like terms: 1.340118789 + -1.285714286 = 0.054404503 x = 0.054404503 Simplifying x = 0.054404503Subproblem 2
x + 1.285714286 = -1.340118789 Simplifying x + 1.285714286 = -1.340118789 Reorder the terms: 1.285714286 + x = -1.340118789 Solving 1.285714286 + x = -1.340118789 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.285714286' to each side of the equation. 1.285714286 + -1.285714286 + x = -1.340118789 + -1.285714286 Combine like terms: 1.285714286 + -1.285714286 = 0.000000000 0.000000000 + x = -1.340118789 + -1.285714286 x = -1.340118789 + -1.285714286 Combine like terms: -1.340118789 + -1.285714286 = -2.625833075 x = -2.625833075 Simplifying x = -2.625833075Solution
The solution to the problem is based on the solutions from the subproblems. x = {0.054404503, -2.625833075}
| b^2-13b+27=0 | | 3x+12=2x^2-2x | | 0=4p+5p | | -3-17=-(17+3x) | | -3d+3=30 | | 2x+3y+5x+7y= | | X=9X-2 | | -3-217=-(17+3x) | | 3c+13-7c=-35 | | 16n^2=n | | 4(2x+1)=5x+2x+28 | | -4+p=15 | | 32=-3+5(x+6) | | -2y-1=8(y+2)-7 | | 1x+2.5=2x-3 | | 6(.5x+4)=12 | | f(x)=-7x^2+7x+4 | | 4+4k=36 | | 125a^3=63 | | -27x-18=9x+6 | | 6y+1=-9y+10 | | -5.8(2x+4)-2.7(3x-6)= | | 49=2*5n | | 3x-6(5x+3)=9x+6 | | -3x+15=2x+10 | | 4-3y=-11 | | 4-(m+5)=3(m-2) | | 4(-8n+5)=-32n-26 | | 52.6-6n=41.2 | | 2(4x-5)+9=3x+4 | | 8x+24=6x | | x+(10x)=x+(15x) |